lunes, 26 de marzo de 2012

Transistores de potencia


El transistor de potencia
El funcionamiento y utilización de los transistores de potencia es idéntico al de los transistores normales, teniendo como características especiales las altas tensiones e intensidades que tienen que soportar y, por tanto, las altas potencias a disipar.
Existen tres tipos de transistores de potencia:
  • bipolar.
  • unipolar o FET (Transistor de Efecto de Campo).
  • IGBT.
ParámetrosMOSBipolar
Impedancia de entradaAlta (1010 ohmios)Media (104 ohmios)
Ganancia en corrienteAlta (107)Media (10-100)
Resistencia ON (saturación)Media / altaBaja
Resistencia OFF (corte)AltaAlta
Voltaje aplicableAlto (1000 V)Alto (1200 V)
Máxima temperatura de operaciónAlta (200ºC)Media (150ºC)
Frecuencia de trabajoAlta (100-500 Khz)Baja (10-80 Khz)
CosteAltoMedio
El IGBT ofrece a los usuarios las ventajas de entrada MOS, más la capacidad de carga en corriente de los transistores bipolares:
  • Trabaja con tensión.
  • Tiempos de conmutación bajos.
  • Disipación mucho mayor (como los bipolares).
Nos interesa que el transistor se parezca, lo más posible, a un elemento ideal:
  • Pequeñas fugas.
  • Alta potencia.
  • Bajos tiempos de respuesta (ton , toff), para conseguir una alta frecuencia de funcionamiento.
  • Alta concentración de intensidad por unidad de superficie del semiconductor.
  • Que el efecto avalancha se produzca a un valor elevado ( VCE máxima elevada).
  • Que no se produzcan puntos calientes (grandes di/dt ).
Una limitación importante de todos los dispositivos de potencia y concretamente de los transistores bipolares, es que el paso de bloqueo a conducción y viceversa no se hace instantáneamente, sino que siempre hay un retardo (ton , toff). Las causas fundamentales de estos retardos son las capacidades asociadas a las uniones colector - base y base - emisor y los tiempos de difusión y recombinación de los portadores.

Principios básicos de funcionamiento
La diferencia entre un transistor bipolar y un transistor unipolar o FET es el modo de actuación sobre el terminal de control. En el transistor bipolar hay que inyectar una corriente de base para regular la corriente de colector, mientras que en el FET el control se hace mediante la aplicación de una tensión entre puerta y fuente. Esta diferencia vienen determinada por la estructura interna de ambos dispositivos, que son substancialmente distintas.
Es una característica común, sin embargo, el hecho de que la potencia que consume el terminal de control (base o puerta) es siempre más pequeña que la potencia manejada en los otros dos terminales.
En resumen, destacamos tres cosas fundamentales:
  • En un transistor bipolar IB controla la magnitud de IC.
  • En un FET, la tensión VGS controla la corriente ID.
  • En ambos casos, con una potencia pequeña puede controlarse otra bastante mayor.
Ataque y protección del transistor de potencia
Como hemos visto anteriormente, los tiempos de conmutación limitan el funcionamiento del transistor, por lo que nos interesaría reducir su efecto en la medida de lo posible.

Los tiempos de conmutación pueden ser reducidos mediante una modificación en la señal de base, tal y como se muestra en la figura anterior.
Puede verse como el semiciclo positivo está formado por un tramo de mayor amplitud que ayude al transistor a pasar a saturación (y por tanto reduce el ton) y uno de amplitud suficiente para mantener saturado el transistor (de este modo la potencia disipada no será excesiva y el tiempo de almacenamiento no aumentará). El otro semiciclo comienza con un valor negativo que disminuye el toff, y una vez que el transistor está en corte, se hace cero para evitar pérdidas de potencia.
En consecuencia, si queremos que un transistor que actúa en conmutación lo haga lo más rápidamente posible y con menores pérdidas, lo ideal sería atacar la base del dispositivo con una señal como el de la figura anterior. Para esto se puede emplear el circuito de la figura siguiente.

Tiempos de conmutación


Cuando el transistor está en saturación o en corte las pérdidas son despreciables. Pero si tenemos en cuenta los efectos de retardo de conmutación, al cambiar de un estado a otro se produce un pico de potencia disipada, ya que en esos instantes el producto IC x VCE va a tener un valor apreciable, por lo que la potencia media de pérdidas en el transistor va a ser mayor. Estas pérdidas aumentan con la frecuencia de trabajo, debido a que al aumentar ésta, también lo hace el número de veces que se produce el paso de un estado a otro.Podremos distinguir entre tiempo de excitación o encendido (ton) y tiempo de apagado (toff). A su vez, cada uno de estos tiempos se puede dividir en otros dos.





No hay comentarios:

Publicar un comentario